9. Parallel Methods for Solving Linear Equation Systems

ثبت نشده
چکیده

9.1. Problem Setting .......................................................................................................................1 9.2. The Gauss Algorithm...............................................................................................................2 9.2.1. Sequential Algorithm.......................................................................................................2 9.2.1.1 Gaussian Elimination ..............................................................................................................2 9.2.1.2 Back Substitution ....................................................................................................................3 9.2.2. Computation Decomposition...........................................................................................4 9.2.3. Analysis of Information Dependencies ...........................................................................4 9.2.4. Scaling and Distributing Subtasks among Processors ...................................................4 9.2.5. Efficiency Analysis ..........................................................................................................5 9.2.6. Software Implementation ................................................................................................6 9.2.7. Computational Experiment Results ................................................................................9 9.3. The Conjugate Gradient Method ...........................................................................................11 9.3.1. Sequential Algorithm.....................................................................................................11 9.3.2. Parallel Algorithm..........................................................................................................12 9.3.3. Efficiency Analysis ........................................................................................................12 9.3.4. Computational Experiment Results ..............................................................................13 9.4. Summary ...............................................................................................................................14 9.5. References ............................................................................................................................15 9.6. Discussions............................................................................................................................15 9.7. Exercises ...............................................................................................................................15

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two-stage Iterative Method for Linear Systems and Its Application in Solving Poisson's Equation

In the current study we investigate the two-stage iterative method for solving linear systems. Our new results shows which splitting generates convergence fast in iterative methods. Finally, we solve the Poisson-Block tridiagonal matrix from Poisson's equation which arises in mechanical engineering and theoretical physics. Numerical computations are presented based on a particular linear system...

متن کامل

DELFT UNIVERSITY OF TECHNOLOGY REPORT 02-12 Some Numerical Aspects for Solving Sparse Large Linear Systems Derived from the Helmholtz Equation

In this report, several numerical aspects and difficulties for solving a linear system derived from the time-harmonic wave equations are overviewed. The presentation begins with the derivation of the governing equation for waves propagating in general inhomogeneous media. Due to the need of numerical solutions, various discretizations based on finite difference are discussed. Some numerical met...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

A new approach for solving fuzzy linear Volterra integro-differential equations

In this paper, a  fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong  generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method  and other numerical methods.Error ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006